Funktionentheorie

A. Holomorphe Funktionen

Komplexe Differenzierbarkeit

DEF: ff:ΩC:Omega->CC komplex differenzierbar in z0Ω:z_0 in Omega:<=>
1. f´(z0):=limzz0f(z)f(z0)zz0f´(z_0) := lim_(z -> z_0) (f(z) - f(z_0)) / (z - z_0) existiert
2. ΩCOmega subset CC offen
DEF: ff holomorph auf Ω:Omega :<=>
fO(Ω):f in cal(O)(Omega):<=> ff komplex differenzierbar in jedem zΩz in Omega

SATZ:: ff komplex differenzierbar in z0z_0 => ff stetig in z0z_0

Beweis:
Zz: limzz0f(z)=f(z0)lim_(z -> z_0) f(z) = f(z_0)
limzz0(f(z)f(z0))=0<=> lim_(z -> z_0) (f(z) - f(z_0)) = 0
Also: limzz0(f(z)f(z0))lim_(z -> z_0) (f(z) - f(z_0))
=limzz0(f(z)f(z0)zz0(zz0))= lim_(z -> z_0) ( (f(z) - f(z_0)) / (z - z_0) dot (z - z_0) )
=(limzz0f(z)f(z0)zz0)(limzz0(zz0))= ( lim_(z -> z_0) (f(z) - f(z_0)) / (z - z_0) ) dot ( lim_(z -> z_0) (z - z_0) )
=f´(z0)0= f´(z_0) dot 0
=0= 0

SATZ: xf(g(x)=gf(g(x))xg(x)diff_x f(g(x)=diff_g f(g(x)) dot diff_x g(x)
f(g(x))x=f(g(x))g(x)g(x)x<=> (diff f(g(x)))/(diff x)=(diff f(g(x)))/(diff g(x)) dot (diff g(x))/(diff x)
(f(g(x)))=f(g(x))g(x)<=> (f(g(x)))`=f`(g(x))dot g`(x)
(fg)x(x)=fg(g(x))gx(x)<=>(f circle g) ^(arrow.b x) (x) = f^(arrow.b g)(g(x)) dot g^(arrow.b x) (x)